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Abstract
We review various aspects of our recent work on dipolar excitons in double
quantum well systems. We describe and analyse different possible avenues
for obtaining high density and cold dipolar exciton fluids that may enable an
observation of quantum phase transitions in excitonic systems. These avenues
include free dipolar exciton fluids, dipolar exciton fluids in electrostatic traps
and in excitonic rings. We present our experimental and modelling work on the
exciton dynamics in such systems, and discuss our current view of the advances
made and the challenges that remain in this fast evolving and promising field of
research.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The search for the elusive quantum phase transitions of excitons in semiconductors has a long
and interesting history stretching back about half a century. As relatively ‘new comers’ to
this rich and lively research field, we do not intend to give here a comprehensive review of
the results that have been collected over the years by the many research groups that were and
are working in this field. Instead, we will try to give a brief summary of our own research
efforts, in the broader context of the general advancements and the exciting and intriguing new
results that emerge in a fast growing rate in recent years, mostly those from long lived indirect
excitons, also known as dipolar excitons, in high quality GaAs double quantum wells (DQW’s)
grown by molecular beam epitaxy. We will try to convey what is our current understanding
of the dynamics of such exciton fluids under different experimental situations, what seem to
be the main obstacles, and what are the emerging promising techniques that could overcome
(and already do to some extent) those obstacles and enable the long sought observation and
unambiguous identification of new thermodynamic phases of exciton fluids.

2. Background

Two dimensional (2D) excitons, which are Coulomb bound electron–hole pairs (quasi-
particles) confined in a semiconductor quantum well (QW) layer can be considered as bosons,

0953-8984/07/295207+40$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/29/295207
http://stacks.iop.org/JPhysCM/19/295207


J. Phys.: Condens. Matter 19 (2007) 295207 R Rapaport and G Chen

as long as their density is low enough such that the identity of their fermionic constituents is
essentially hidden within the excitonic atomic-like structure. This will happen when the average
inter-exciton distance is much larger than the size of the exciton, or its Bohr radius. Therefore,
under the right conditions, excitons are expected to undergo quantum phase transitions, the
exact nature of which will depend on the interplay between their Bose–Einstein statistics and
their mutual interactions. Such a transition could be, for example, to a Bose–Einstein conden-
sate [1] somehow similar to trapped alkali atoms [2], or to a condensed superfluid state [3–5],
resembling, for instance, superfluid 4He. Furthermore, due to the very small effective mass
of excitons compared to atoms, these quantum phase transitions are expected at temperatures
of the order of one to few kelvins, which are achievable with a standard liquid He cryogenic
equipment commonly available in many laboratories. A major disadvantage of excitons com-
pared to real atoms, however, is that they need to be (usually optically) excited and that they
live in the material for only a very short lifetime afterwards. Optically exciting excitons means
that their initial state is not in thermal equilibrium and that right after their excitation they are
hotter than their semiconductor host material. Excitons in single QW’s, for example, have
radiative lifetimes which are typically in the sub-nanosecond range, after which the exciton’s
electron and hole will spontaneously recombine by emitting a photon. This limits the time
available for these excitons to cool down to the host lattice temperature and achieve thermal
equilibrium, and seems to be a major obstacle for achieving cold and well thermalized exciton
fluids. Another obstacle for excitons is that they tend to agglomerate to drops of electron–hole
plasma when they become dense enough so that their effective attractive interaction becomes
important. This limits the useful exciton densities one can work with, making it hard to achieve
densities high enough for quantum correlations and quantum statistical degeneracy to take
place with achievable crystal temperatures and without agglomeration. Thus, a clear observa-
tion of these elusive phase transitions remained one of the toughest challenges that researchers
in the exciton physics field have been working toward for the past several decades. As men-
tioned earlier, we would not attempt to describe all that previous work, and one can refer to
some recent reviews [6, 7] and the references within for a better and fuller perspective of the
scope of this field. In the rest of this paper, we will discuss a unique class of QW excitons,
that are spatially indirect, that have been introduced to this field of study in the last decade or
so, and that we have been working on for the last few years. In these spatially indirect exci-
ton systems, the constituent electrons and holes of the lowest energy levels are separated into
two weakly coupled QW’s with an inter-well energy barrier [8, 9] and an external bias, as is
illustrated in figure 1. This separation results in two unique features. First, since the electron
and the hole are in two different QW’s, separated by a high energy barrier, the overlap of their
wavefunctions is dramatically reduced, hence the exciton lifetime can become extremely long
(in the microseconds regime) and in principle should easily accommodate for the necessary
cooling and thermalization processes, an important improvement over excitons in single QW’s.
Luckily, the exciton binding energy is much less dramatically reduced, as the direct term of the
Coulomb interaction does not depend on this overlap [10, 11]. Secondly, the indirect excitons
are intrinsically dipolar, as the electron and hole are separated in different spatial positions
along the growth direction, resulting in a permanent (within the exciton lifetime of course)
electric dipole moment. The excitons dipole moments are all aligned perpendicular to the QW
plane, resulting in a net dipole–dipole repulsive interaction between them. This short range
interaction prevents the unwanted exciton agglomeration and is expected to play a crucial role
in the physics of quantum phase transitions of such an exciton fluid, which is a good model
system for interacting bosons in two dimensions.

All of this makes the dipolar exciton system a very promising and interesting system to
explore, and it might seem that just by shifting from direct excitons in single QW’s to dipolar
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Figure 1. (a) Band diagram for GaAs/AlGaAs DQW structure under external bias and the formation
of dipolar excitons. (b) A Gaussian radial density profile of a dipolar exciton fluid and the internal
repulsion force due to the dipole interaction.

excitons in DQW’s, all problems are solved and observing quantum phase transitions is now
straightforward. Unfortunately, this is quite far from being true. Here we will try to portray our
current view of what are at least some of the remaining problems with the dipolar exciton
systems and discuss some of the techniques that have recently evolved to overcome these
remaining challenges. These techniques are being experimentally tested currently, providing
results which suggest that, being quite cautious, some very interesting things occur with these
exciton systems at high densities and low temperatures.

3. Overview

The structure of the paper is as follows: in section 4, we present the model that describes the
density and temperature dynamics of dipolar excitons. This model will be used throughout the
paper to analyse and compare with experimental results. In section 5 we describe the dynamics
of free expanding exciton fluids under laterally homogeneous bias and discuss the consequences
of the dipolar repulsion and expansion on the density and temperature evolution of the exciton
fluid. In section 6, we propose and experimentally realize electrostatic exciton traps which
prevent the excitons from expanding and therefore eliminate some of the disadvantages of a
free expanding exciton fluid in achieving high density and cold excitons. Measurements and
model analysis show that a high density dipolar exciton fluid can indeed be confined within
the trap for a long time and it may have reached quantum degeneracy. In section 7, we discuss
modelling and experiments on exciton ring systems, where an in-plane charge separation may
provide a source for obtaining cold excitons far away from the excitation source. In section 8,
we summarize issues related to the exciton cooling in the various experimental geometries,
i.e., free expanding excitons, trapped excitons, and exciton rings, and discuss the pros and
cons of pulsed as well as continuous wave (CW) optical excitations. Finally, in section 9,
we briefly analyse the stability of dipolar exciton crystal phase in a confined geometry as
a possible competitor for exciton quantum phase transitions. In section 10 we summarize
the main points of this paper and refer to new experimental results that may suggest exciton
quantum correlations.
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4. Dipolar exciton dynamics model

In this section we present a simple model for the dynamics of dipolar excitons [12–14]. It is a
good starting point to understand some of the particular properties of dipolar excitons and their
effect on the density and temperature evolution of the excitons. This model will be used in later
sections to analyse experimental results of free expanding dipolar excitons, excitons in traps,
and dipolar exciton rings.

Consider the DQW structure under an external electric bias as is illustrated in figure 1(a).
There are two distinct excitations, a direct exciton, where the electron and the hole are in the
same QW, and the dipolar exciton, in which the electron and the hole are in two different
QW’s. Under large enough applied bias, the dipolar exciton has a lower transition energy than
the direct exciton, and its red-shifted energy (with respect to the direct exciton transition) is
bias dependent.

A distribution of such dipolar excitons can be optically excited in the plane of this structure,
resulting in an in-plane density profile of dipolar excitons, nX(�r, t) (here �r ≡ �r|| is the in-plane
spatial coordinate). Due to the separation of electrons and holes into two different planes
along the growth direction, the resulting excitons carry a permanent dipole moment pointing
perpendicular to the QW planes. As all the dipoles of the excitons are aligned in the same
direction, there is a net repulsive dipole–dipole interaction between the excitons. In the mean
field approximation, neglecting exciton–exciton correlations, this repulsion leads to an extra
interaction energy term per exciton, which is linear with the local exciton density [15, 16, 12]:

εd(�r) = 4πed

ε
nX(�r) ≡ αnX(�r), (1)

where d is the exciton dipole, and ε is the background dielectric constant. The resulting
effective dipole repulsion force,

Fd(�r) = −α∇nX, (2)

is proportional to the density gradient. Figure 1(b) shows the force profile for a radial Gaussian
distributed exciton fluid.

To describe the dynamics of such a collection of excitons, some assumptions on the
forces and scattering processes of the excitons are made. There are three relevant scattering
mechanisms which are considered here. The first one is the fast, density dependent exciton–
exciton scattering [15], which is dominant at high exciton densities. Such a scattering process,
with a characteristic time much shorter than any other timescale of the dynamics, yields an
internal exciton equilibrium and therefore a well defined exciton temperature, TX. It also
yields a temperature and density dependent diffusion coefficient, DXX = DXX(nX, TX). The
derivation of DXX which is used in this model, was done by Ivanov et al in [12], where we refer
the readers for all the relevant details. The other mechanism is due to scattering of excitons
with the QW disorder, which is density independent but yields a diffusion coefficient, Ddo =
Ddo(TX), which depends on the QW width to the sixth power (see [17, 13] for a more detailed
description). Those two scattering processes yield an effective diffusion of excitons, which
includes both the exciton–exciton and disorder contributions. The combined effect can be
included in an effective diffusion coefficient, D(nX, TX), given by: D = DXX Ddo/(DXX+Ddo)

which is density and temperature dependent. At high exciton densities, exciton–exciton
scattering is dominant and D → DXX while at the low density limit the dominant scattering
mechanism is QW disorder and thus at that limit, D → Ddo. The third scattering process that
is responsible for the exciton–lattice thermalization is the exciton–phonon scattering, which
is the slowest process at low temperatures. We use Tl to denote the lattice temperature. In a
simplified picture, we model this thermalization with a single characteristic time (τl).
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Under either internal or external forces, the resulting exciton currents are related to the
various forces through the exciton mobility as: J = nXμF. The exciton mobility, μ, is in turn
related to the effective exciton diffusion coefficient, D, through Einstein relations for a Bose–
Einstein gas in the non-interacting limit in two dimensions: μ = (D/kT0)(eT0/TX − 1) [12].
Here T0 = (2π h̄2nX)/(kgmX) is the degeneracy temperature, mX

∼= 0.2 me is the exciton
mass, and g = 4 is the exciton spin degeneracy in typical GaAs QW structures. Three force
terms are included in this model, leading to three expressions for the exciton currents:

(i) The dipole repulsion force Fd = −α∇nX, which is taken from equation (2), and is a
consequence of the dipole–dipole interaction. The corresponding current term is

Jd = −μαnX∇nX. (3)

(ii) The diffusive force, due to the gradient of the chemical potential, given by FD = −∇ζ =
− kT0/nX

eT0/TX −1
∇nX, where ζ = kTX ln(1 − e−T0/TX) is the chemical potential in the non-

interacting limit. This yields a current term of the form:

JD = −D∇nX. (4)

(iii) External forces, represented by Fext, leading to a current term:

Jext = nXμFext. (5)

The dynamics of a dipolar exciton fluid can then be described by two coupled equations
for the exciton fluid density and temperature. The time evolution of the exciton fluid density is
described by the following diffusion equation:

∂nX

∂ t
+ ∇ · (JD + Jd + Jext) + nX

τX(�r)
− IX(r, t) = 0. (6)

Here, IX(r, t) is the exciton generation source, τX(�r) is the lifetime of the excitons, which is
assumed, for simplicity, to be density independent but can, in general, depend on position, as
in the case of exciton traps to be discussed later on.

The second equation describes the time evolution of the exciton fluid temperature,
TX [14, 18]:

dTX

dt
= −

[
1

k NX

(
∂ Ed

∂ t

)
NX

+ TX − Tl

τl

]
+ IT, (7)

where Ed, the total potential energy due to the dipole–dipole interactions is given by: Ed =∫
αn2

X(r, t)d2r and NX(t) = ∫
nX(r, t)d2r is the total number of dipolar excitons. The first

term on the RHS of equation (7) represents the heating of the exciton fluid due to the driven
expansion: as dipolar excitons expand and their density drops, the potential energy stored due
to their mutual repulsive interaction is released in the form of kinetic energy, which through
the fast exciton–exciton scattering is transformed to heat. The second term represents the
thermalization of the excitons with the lattice, and the last term, IT represents all other heating
terms, such as external heating by optical pumping, hot carriers, etc. This term can be absent
for pulsed excitation after the optical pulse is turned off but can be quite complicated in general
and we will discuss the importance of external heating sources toward the end of this paper, in
section 8.

Equations (6) and (7) are coupled and can be numerically evaluated. In the following
sections we will use the model as a tool to analyse experimental results under different
conditions, and to get more insight into the underlying dynamical processes.
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Figure 2. A typical design of a GaAs DQW sample structure.

5. Free expanding excitons

The simplest and most straightforward way to create a high density dipolar exciton fluid is
to optically excite carriers in a homogeneously biased sample. This excitation, usually not
resonant with the dipolar exciton transition (resonant excitation is very inefficient due to the
very low absorption coefficient of the dipolar exciton transition), results in non-thermalized,
hot charged carriers. After a short excitation pulse, carriers with opposite signs that remain in
the same QW will quickly recombine through the direct exciton transition channel (with typical
times of tens of picoseconds). However, due to the energy profile of the biased QW, there will be
a strong tendency of electrons and holes to accumulate in different QW’s, resulting in a build-
up of a dipolar exciton population. This section describes both experimental measurements
and theoretical modelling of the dynamics of the dipolar excitons that are free to move in
the QW plane. The main finding is that the strong dipolar pressure always dominates the
driving forces for the exciton motion at densities relevant to exciton quantum degeneracy.
This pressure leads to a fast spatial expansion of the excitons, reducing the exciton density
below the critical value for quantum degeneracy much faster than the exciton recombination
lifetime [13]. In the mean time, the dipole repulsion also acts as a significant heating
source which converts repulsion potential energy into thermal energy during the expansion
via exciton–exciton scattering [14, 18].

5.1. Experimental results

The DQW sample structure studied in our experiments is illustrated in figure 2. The QW’s are
100 Å thick and are separated by a 40 Å Al0.45Ga0.55As barriers. Two buffer zones are grown
below and above the QW structure. They consist of narrow QW superlattice structures. The
superlattice structures are designed to capture charged carriers travelling through the sample

6
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Figure 3. The emission image taken from the (a) direct and (b) dipolar excitons. The images are
1×1 mm2 in size. The large spike in the centre is the residual direct exciton emission not completely
rejected by the filters. (c) Spectral image of the direct and dipolar excitons. All images are taken
with a CW He–Ne laser excitation (see text).

and thus reduce the dark currents. Under bias voltages of a few volts the dark current density
is measured to be smaller than 1 μA cm−2. The sample thickness, from the bottom to the top
electrode, is denoted by l. The DQW plane is perpendicular to the growth direction (ẑ) and
its vertical position in the sample is given by z, measured from the bottom electrode. The
importance of the parameter z/ l will be discussed later when we implement electrostatic traps
for dipolar excitons. A small z/ l is achieved by growing a much thicker upper buffer than the
lower one. The structure is grown on an n+ GaAs substrate, which also serves as the bottom
contact. A semitransparent metallic (titanium) film with thickness of ∼15 nm was evaporated
on top of the sample as the top contact. For the study of free exciton expansion, the titanium
contact is extended to the entire sample and therefore the DQW is homogeneously biased. The
optical transmission through the film in the near IR is roughly 15% and is enough for optical
excitation of excitons and collection of emission.

The consequence of the free expansion of excitons driven by various force terms is clearly
seen by the measurement of figures 3(a) and (b), in which the emission images of the direct and
dipolar excitons are taken using narrow spectral bandpass filters tuned to their corresponding
optical transition energies. The excitons are excited by a CW He–Ne laser beam of 4.7 mW
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focused to 40 μm. The sample is biased at 1.5 V. We see that while the direct exciton
emission is observed from an area determined by the excitation spot, the dipolar exciton fluid
is dramatically larger and can extend to hundreds of microns in diameter. Figure 3(c) shows
the spectral image of the direct and dipolar excitons. The exciton emission is spatially and
spectrally resolved in the vertical and horizontal directions, respectively. We see that as the
dipolar excitons expand to a large fluid and their distance from the excitation spot increases,
their spectrum shifts to red. This is a consequence of a decreasing density (the relation between
exciton density and emission energy will be discussed in more details later in section 6).

The time evolution of the exciton fluid after a short pulse excitation was studied
experimentally by Vörös et al [17] by time resolving the dipolar exciton spatial emission profile
after a non-resonant, focused, short pulse excitation on a biased sample similar in design to the
one shown in figure 2. The main results are shown in figure 4(a) for a 100/40/100 Å DQW
sample (for more details on the sample structure and the experiments performed, see [17]).
Figure 4(b) plots the square of the width (σ 2) of the dipolar exciton emission profile as a
function of time for samples with various QW widths. It shows the fast expansion of the
exciton fluid within a short time of only few tens of nanoseconds. We will show later that this
is a result of the strong dipolar repulsion between excitons (the second term of equation (6)). At
later times, as the exciton density (and consequently the exciton density gradient) decreases, the
expansion becomes diffusive (dominated by the first term of equation (6)), which is confirmed
by the linear dependence of σ 2 on time, shown in figure 4(b).

The important parameter D, the exciton diffusion coefficient, was obtained from these
measurements by studying the slope of the σ 2–time curve in the diffusive regime [17]. This
measurement gives the experimental value of D in the low exciton density limit. For DQW
structures with well widths of 80, 100, 120, and 140 Å, the corresponding D were found to
be (in units of cm2 s−1): 0.24, 0.74, 2.08, and 9.4. These results show that D ∝ L6 where
L is the QW width. Similar dependence was found previously for free electrons in QW’s by
Sakaki et al in [19], which is well explained by interface roughness scattering from well width
fluctuations [20–22]. This finding is a strong evidence that indeed, for dipolar excitons at low
temperatures and low densities, potential fluctuations due to interface roughness is the dominant
scattering mechanism.

5.2. Modelling

Using the definitions of the dipolar exciton currents in section 4, the importance of the dipole
driven term, Jd, over the diffusion term, JD, in the dynamics of free expanding excitons can be
easily described by their ratio, γ ,

γ (r, t) = Jd/JD = nXα(eT0/TX − 1)

kT0
. (8)

Whenever γ � 1, the expansion is driven by the repulsive dipolar force. When γ 	 1, the
expansion becomes diffusive. An exciton fluid will exhibit a fast driven expansion if its initial
density profile, n0

X ≡ nX(r = 0, t = 0), satisfies γ (r = 0, t = 0) > 1. As a dense exciton fluid
starts to rapidly expand due the repulsive forces, its density will decrease and the expansion
will slow down. Wherever the density decreases such that γ < 1, the expansion will become
diffusive, until eventually the diffusion will dominate the dynamics of the whole exciton fluid.
This picture is in qualitative agreement with the experimental observations discussed earlier.

Using the parameters extracted from the experiments, we estimate that γ (r = 0, t = 0) 

800, indicating that the exciton fluid should indeed exhibit an initial fast driven expansion due to
the dipole pressure, followed by a diffusive behaviour at later times. In the model calculations,
we assume radial symmetry and an initial Gaussian distribution of optically excited dipolar

8
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Figure 4. (a) The spatial profile of the dipolar exciton fluid at different times after the excitation.
The measured luminescence intensities are normalized. The solid lines are Gaussian fits to the data.
(b) The square of the width of the exciton profile as a function of time. This figure is taken from [17]
with permission from the authors.

excitons, with a half-width σ0 = 15 μm and an n0
X = 1011 cm−2, similar to the experimental

conditions. We also use an exciton dipole length of z0 = 12 nm, a lattice temperature of
3K, and an exciton lifetime of 3 μs (measured). The calculation for σ 2 as a function of time
is plotted in figure 5, showing a very good agreement with the experiments by Vörös et al
plotted in figure 4(b). The only parameters for the calculation that were not predetermined
by the experiments are the exact initial density and the initial temperature of the exciton fluid.
The density can be only roughly estimated from the excitation intensities quoted in [17], which
indeed yields n0

X ∼ 1 × 1011 cm−2. Here, we assume that the optically excited electrons

9
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Figure 5. Calculated σ 2 of the dipolar exciton density profiles as a function of time after excitation
by an optical pulse, for diffusion coefficients and experimental parameters similar to those in the
experiments discussed in [17] and shown in figure 4.

and holes quickly bind into dipolar excitons with an effective temperature of 50 K determined
roughly by the dipolar exciton binding energy.

A very important consequence of a fast expanding exciton fluid is the quick decrease of
the dipolar exciton density, with time scales much shorter than the recombination lifetime.
This fast density decrease will limit the time where the dipolar exciton density is larger than
the critical quantum degeneracy density nc

X = gmXkTX/(2π h̄2), which marks the onset of
distinguishable Bose–Einstein statistics effects, can be sustained. It turns out that the ratio
between nc

X and the critical density for the driven expansion regime, nc
d = kTX/α, derived by

setting γ = 1, is

nc
X

nc
d

= 2mXge2z0

h̄ε
≈ 20, (9)

for typical GaAs DQW structures. This ratio is independent of temperature, and its value
suggests that a degenerate Bose–Einstein fluid of dipolar excitons is always strongly driven by
the dipolar pressure.

In figure 6(a) we plot the calculated central density, nX(r = 0, t), of an expanding, initially
small (σ = 15 μm) and high mobility exciton fluid (D = 10 cm2 s−1) as a function of
time and assuming TX = Tl. The calculations are performed with a lattice temperature of
Tl = 2 K, for different initial exciton densities n0

X. The horizontal dash–dotted line represents
the critical quantum degeneracy density nc

X. As can be seen, due to the fast initial expansion,
within less than 30 ns, the density of the originally degenerate exciton fluid drops below nc

X
even for high initial densities (in this calculation, we used densities as high as 2 × 1011 cm−2,
in which the indirect excitons may not be well defined single particles anymore. In those
cases, the strong Coulomb repulsion between same charge carriers will result in a qualitatively
similar expansion). This time is much shorter than the exciton lifetime of 3 μs. Figure 6(b)
shows similar traces for different exciton diffusion coefficients. While smaller diffusion
coefficients seem to result in less expansion and thus longer times for quantum degeneracy

10
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Figure 6. Calculated centre exciton densities as a function of time, nX(t, r = 0) for (a) different
initial centre densities n0

X, and (b) different exciton diffusion coefficients D. The dashed–dot lines
mark the quantum degeneracy density nc

X.

(nX(r = 0) > nc
X), they also suggest a poor sample quality and large disorder which can

strongly suppress quantum phase transitions.
The above results are summarized in figures 7(a), (b) where the time interval �t in which

nX(r = 0) > nc
X as a function of the exciton temperature, for various D values and initial

densities n0
X are shown. For high mobility samples, decreasing the temperature and increasing

the initial density only slightly increases �t , to values still much smaller than τX, as a result of
the fast driven expansion. For low mobility samples, at very low temperatures, �t can be in the
microsecond range, comparable to τX. However, at high exciton densities, it is predicted [12]
that the dipolar interaction will effectively screen the disorder, which in turn will make the fluid
much more mobile, even for lower quality samples. This will increase the effective diffusion
coefficient, thus again leading to fast expansion.

Figure 7(c) shows the dependence of �t on the initial size of the exciton fluid for
D = 10 cm2 s−1 and TX = Tl = 2 K. As the initial size increases (keeping the same centre
density), the dipole driving force decreases Fd ∝ |∇nX| ∝ 1/σ0, and so does the expansion
rate. Starting with large enough initial exciton fluids leads to much smaller expansion rates
and thus to �t values comparable to the exciton lifetime τX. This strategy is acceptable but
will require large excitation powers to create a large dense exciton fluid which may lead to
substantial heating of the lattice.

The above calculations show that even if the dipolar excitons immediately thermalize with
the lattice, the time that the dipolar exciton fluid sustains a density above the degeneracy
threshold after the excitation by an optical pulse is limited. Unfortunately, the time that the
dipolar excitons can actually be degenerate is even shorter. This is a direct consequence of
the fact that initially the optically excited dipolar excitons are much hotter than the actual

11
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Figure 7. Time interval �t in which the centre dipolar exciton fluid density, nX(r = 0), at TX = Tl

is larger than the quantum degeneracy density, nc
X, as a function of the lattice temperature, Tl.

(a) shows the results for different diffusion coefficients, D while (b) shows different initial centre
densities, n0

X. (c) shows �t as a function of the initial size of the exciton fluid for TX = Tl = 2 K.

Figure 8. Calculated (a) temperature, and (b) ground state occupancy evolution of a free expanding
dipolar exciton fluid.

lattice temperature and of the additional heating in the expanding exciton fluid caused by
the conversion of the exciton dipole repulsion energy into thermal energy of the excitons via
exciton–exciton scattering [14, 18].

The calculated temperature evolution of the exciton fluid is plotted in figure 8(a). Here we
assume the dipolar excitons are created hot with a temperature of 50 K and that the exciton–
lattice thermalization time is τl = 1 ns. We used a Tl of 1.4 K and a D of 10 cm2 s−1

for this calculation. The calculation shows that the expansion induced heating dramatically
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slows down the exciton cooling, which would happen on a timescale determined by τl if the
expansion induced heating was not present. Using this calculated exciton temperature and
density evolution, the 2D exciton quantum degeneracy or the ground state occupation number,
NE=0 = (exp(T0/TX) − 1), can be determined. Figure 8(b) shows NE=0 as a function of time
for the expanding excitons. We see that although τl is short, NE=0 rises much slower initially,
due to both the extra heating and the decreased density, both of which result from the exciton
expansion. Figure 8(b) shows the time that the excitons are degenerate (with NE=0 > 1)
is on the order of tens of nanoseconds only, and that the degree of degeneracy is not very
high. Another possibility is to use CW excitation, thus preventing the fast density depletion by
continuously supplying new excitons. The analysis of the advantages and limitations of such
CW excitation method will be discussed in section 8.

6. Excitons in electrostatic traps

The analysis in section 5 shows that at least for the case of pulsed excitation, the free expansion
driven by the strong dipole–dipole repulsion severely limits the capability of creating a dense
dipolar exciton fluid for a long period of time using tightly focused beams. There are two
strategies to keep a high mobility dipolar exciton fluid from too much expansion. The first
is to strongly defocus the optical pulses and excite an initially very large exciton fluid, thus
suppressing the density gradient and the fast expansion. This approach, however, is not
favourable since it involves high overall excitation power which could lead to complications
such as increased lattice temperature. The other strategy is to design an artificial spatial
confinement for the dipolar excitons in the QW plane. Such spatial confinement creates
exciton traps that can prevent the excitons from expanding and keep them dense with a reduced
total number of excitons and therefore much lower total excitation power. This advantage of
achieving high density dipolar exciton fluid with a reduced excitation power also applies to the
steady state case where a CW excitation is used. A high density steady state dipolar exciton
fluid can be achieved without any trapping, but the excitation power needed to compensate for
the effect of the exciton fluid expansion is much higher than that needed for the same exciton
density in a trap.

A small exciton trap not only helps to reduce the required optical excitation power for
achieving high densities, it is also predicted to increase the temperature for a phase transition
to a condensed state [12]. Furthermore, as we will show later, some trap designs result in a
spatially homogeneous distribution of excitons within the trap boundary, creating a ‘pool’ of
excitonic fluid. Such a fluid is very interesting from both thermodynamics and hydrodynamics
points of view.

The trapping of dipolar excitons can be achieved by either introducing a local strain into
the QW’s, a technique currently used by the Pittsburgh group [23], optically induced traps [24],
or using local electrostatic gates to create spatially varying electric fields [25–29], the approach
that we took in our own experiments. As we will show, electrostatic traps have a flat profile
and a sharp boundary. They can be effectively controlled in depth and spatial extent, and can
be reconfigured quite fast.

In this section, we first discuss the basic concept of operation and issues related to a
design of effective electrostatic traps. We then show the modelling of the dynamics of dipolar
excitons in a trap. Finally, we present experimental results showing that these traps indeed
confine a stable, high density dipolar exciton fluid for a time comparable to the intrinsic dipolar
exciton radiative lifetime, τX. The electrostatic trapping therefore represents a promising way
of studying the complex thermodynamic phases of interacting dipolar excitons.
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Figure 9. (a) An illustration of a suggested dipolar electrostatic trap design. (b) Calculated
equipotential lines, and (c) calculated total electric field distribution close to the edge of a circular
trap with R/ l = 10.

6.1. Concept and design

The idea of electrostatic trapping is straightforward [25, 29, 30]. It utilizes the fact that the
dipolar excitons that are aligned perpendicular to the plane of the QW’s are high field seekers:
they tend to stay at positions with lower potential where the electrical field parallel to the
dipole moments is higher. A high field region (trap) is easily realized using a local electric
gate. Consider a geometry where the extended metallic film contact used in the free exciton
expansion studies is reduced to a small circular gate with a radius R, as illustrated in figure 9(a).
Applying a sufficient voltage between the top and bottom electrodes creates higher field and
therefore lower potential for the dipolar excitons under the circular gate. The trapping potential
profile is determined by the field distribution via

εt = �d · �E(r, z) = dEz(r, z), (10)

where �d = −ez0ẑ is the exciton dipole moment, �E = −∇φ is the applied electric field, r
is the in-plane radial coordinate with its origin at the centre of the circular top gate, and z0

is the effective separation between the electron and the hole and is equal to the separation
between the centres of the two QW’s to a good approximation. At the centre of the gate,
�E(r = 0) ≡ �E0 = −φ0/ l ẑ, where φ0 is the potential difference applied between the top gate

and the bottom electrode.
Figures 9(b) and (c) show the electrostatics with the equipotential lines and total electric

field distribution illustrated, respectively. Here, as an example, we used a geometry where
R = 5 μm, l = 0.5 μm (R/ l = 10), z0 = 100 Å and �φ0 = 1 V. The confining potential
energy for dipolar excitons, εt, is depicted by the solid line in figure 10 as a function of r . The
maximal trapping energy at the centre of the trap is ε0

t = −ez0�φ0/ l. The dipolar excitons
experience a trapping force mostly near the sharp boundaries given by

Ft(r, z) = d
∂ Ez

∂r
r̂ (11)

as illustrated by the dotted line in figure 10.
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Figure 10. Calculated confining energy for dipolar excitons (εt, solid line) and force (Ft, dashed
line) for a circular trap with R = 5 μm, l = 0.5 μm, a potential difference �φ0 of 1 V and a dipole
length z0 = 100 Å. The pairs of circles schematically represent dipolar excitons which experience a
trapping force at the trap boundary and an outward expansion force inside the trap due to the dipolar
repulsion.

Ideally, for R � l, such a trap behaves like a ‘pool’ of free moving excitons, subject to
perfectly reflecting boundary conditions at the edges (one can get a non-flat potential well for
R ∼ l). As the exciton density within the trap increases, the interaction between the dipolar
excitons, εd(nX), given by equation (1), effectively screens the electric field from the electrodes,
leading to higher potential for the dipolar exciton fluid. In the case that εt > εd, the excitons
will be confined within the boundaries of the trap being reflected from the walls by the trap’s
dipole force. As the exciton density becomes large enough to yield εt

∼= εd, the external field
applied via the electrodes will be completely screened and the dipolar excitons will experience
no trapping force and will spill over, with much shorter lifetimes as they become more direct.
This condition for trapping can be expressed as

|εt/εd| > ϑ (12)

where ϑ is a parameter larger than but of order 1, which determines by how much ‘residual’
trapping energy is required in the experiment in order to keep the dipolar exciton radiative
lifetime, τX, long enough. It is straightforward to see that the maximal trapped exciton density
for a given applied potential difference φ0 is:

nmax
X = εφ0

4πelϑ
. (13)

Here, we have neglected the possible ‘spill’ of dipolar excitons due to the thermal energy kTX

since it is always much smaller than εdd at temperatures and densities relevant for exciton
quantum degeneracy.

To confine excitons with a desired density, the above discussion suggests that one only
needs to apply an external potential difference large enough to make the potential trap deeper
than the dipolar interaction energy. Unfortunately, we have so far ignored the electric field
component in the QW plane near the trap boundary, Er, which increases with an increasing
applied potential difference. This radial field will tend to pull the electron and the hole into
opposite directions and thus ionize the excitons [31, 25], reducing the total exciton density
and giving rise to an effective lifetime of excitons in the trap, τtrap, which we have derived
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analytically in [30]. Thus, to achieve a dense and long lived dipolar exciton fluid, it is essential
that Er and therefore the external potential difference do not exceed the level which makes the
effective trap lifetime shorter than the time required for exciton cooling and thermalization.

The constraint on the trap performance now becomes obvious: for a desired exciton density
in the trap, there is a minimum required vertical field in order to get the trapping energy εt larger
than εd. This requirement will introduce a radial field which in turn will increase the ionization
rate at the trap boundaries and will reduce the effective trap lifetime. This constraint is shown
by the calculated curves in figure 11(a) for different sample structures characterized by different
z/ l value. The x-axis gives the dipolar exciton densities one wishes to achieve (or equivalent,
the trap depth εt) and the y-axis shows the resulting effective trap lifetime. It can be readily seen
that as the desired exciton density increases, the effective trap lifetime deteriorates. This will
dramatically reduce the time available for exciton thermalization even if their intrinsic lifetime
is very long, and will dramatically increase the optical power required to achieve such densities.
Most importantly, the effective trap lifetime improves exponentially for structures with smaller
z/ l value, in which the DQW is closer to the bottom substrate and the in-plane ionizing field is
smaller.

Reversing the above analysis, the requirement that the effective trap lifetime τtrap be
longer than 1 μs (comparable to the dipolar exciton recombination lifetime and desirable for
exciton thermalization and cooling) puts an upper limit on the applied potential difference,
and consequently limits the maximum achievable exciton density. This maximum density,
nmax

X , as a function of z/ l is shown by the solid line in figure 11(b). For densities beyond
this maximum, the applied bias becomes too large and the trap becomes ineffective due to the
exciton ionization. The upper bound of achievable densities implies an corresponding maximal
lattice temperature required to achieve degeneracy. This temperature requirement as a function
of z/ l is shown by the dashed curve in figure 11(b).

Figure 11(b) shows that as the DQW’s gets further away from the bottom electrode, there
is a strong reduction of nmax

X due to the increased in-plane electric field. The guideline for
designing a trap for a high density dipolar exciton fluid is then to minimize z/ l as much as
possible. In practice however, a sample with the DQW’s too close to the n-doped substrate
may suffer from other problems such as unwanted doping of electrons. Thus while we need to
keep z/ l small, z has a practical minimum value which will then determine the total sample
thickness, l. Our calculation shows that z/ l should be smaller than 0.25 for an exciton
density larger than 1010 cm−2, for which the lattice temperature required for degeneracy is
still achievable in the laboratory. We have designed and grown a set of samples with various
z/ l values, the smallest of which has z/ l ≈ 0.01. For the small z/ l samples the in-plane field
is small enough that an exciton fluid with densities up to ∼1011 cm−2 can be confined without
significant ionization, thus covering the whole density range up to the Mott transition density,
where excitons transform to e–h plasma. In section 6.3, we will discuss measurements from
such samples. Details on how to calculate the in-plane field, the exciton ionization rate, and the
effective trap lifetime can be found in [30].

6.2. Modelling

The general model of section 4 can now be used to calculate the effect of the trapping potential.
This section discusses calculations showing that the electrostatic trap can indeed confine a
spatially uniform dipolar exciton fluid with densities way above the threshold value for quantum
degeneracy for a period of the order of the exciton recombination lifetime, τX.

Compared to the free expanding case, the effect of the electrostatic trapping is included
in the third term for the exciton current, Jext, in equation (6) for the dipolar exciton density
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Figure 11. (a) Effective trap lifetime as a function of the desired trapped density nX and the
trap energy εt(r = 0) for various vertical positions of the double QW structure in the trap, z/ l.
Here R/ l = 50, and ϑ = 1.2. (b) The calculated maximal density (solid line) of trapped dipolar
excitons (with same parameters as in (a)), and the expected Bose–Einstein condensation transition
temperature (dashed–dot line), as a function of z/ l. The horizontal line marks the approximated
Mott density.

dynamics. This exciton current is driven by the trapping force of equation (11), as a result
of the electrostatic trapping potential shown, for example, by the solid line in figure 10.
For calculation convenience, we approximate this potential profile with an analytic function:

εt(r) = ε0
t
2 (1 + tanh 2(r−R)

δ
). Here, ε0

t is the potential energy at the trap centre (see section 6.1)
and δ is the effective ‘thickness’ of the boundary region, determined by the distance between the
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Figure 12. The calculated potential radial profile (solid line) and its analytic approximation (dashed
line) for an electrostatic trap.

top gate and bottom electrode. This approximation is fairly accurate as illustrated in figure 12
where the numerically calculated and the analytically approximated potential profiles are shown
by the solid and dashed lines, respectively. The resulting exciton current due to trapping is:

Jext = −μnX
ε0

t
δ
[1 − tanh2 2(r−R)

δ
]r̂. The other two terms in equation (6) for excitons in an

electrostatic trap are similar to those for the case of free expanding dipolar excitons. The
dipolar exciton lifetime here becomes position dependent, having different values inside the
trap, on the trap boundary, and outside of the trap.

In the following calculations, the size of the trap is taken as R = 25 μm, and the depth
of the trap is fixed at ε0

t = 30 meV (consistent with our experiments). Similar to the free
exciton expansion calculation, we assume that a pulsed (∼ 1 ns) optical excitation creates
dipolar excitons at the centre of the trap with a Gaussian profile: nX(r, t = 0) = n0e−r2/w2

0 ,
where, as is typical for our experiments, w0 = 15 μm and n0 = 1.5 × 1011 cm−2. The position
dependent exciton lifetime, τX, is taken to be 1.5 μs inside the trap, similar to experimentally
measured values for dipolar excitons under similar bias voltage. Outside the trap, the excitons
are direct and their lifetime is taken as τX = τXD = 0.1 ns. In the trap boundary region, the
effective τX is calculated using the exciton ionization rate determined by the in-plane electric
field, as detailed in [30].

Figure 13(a) plots the radial density profile of the dipolar excitons in a high quality
electrostatic trap with negligible boundary ionization, in which case the exciton lifetime in
the trap boundary region is only limited by the intrinsic lifetime of the excitons. The values of
the diffusion coefficients are determined by the free exciton expansion experiments discussed in
section 5. Figure 13(a) shows that within tens of nanoseconds the profile flattens, as the driven
expansion by the dipole repulsion pushes the excitons to the reflecting trap boundary. The
competition between the repulsion and trapping force results in a stable flat exciton density
profile (the density profile with the lowest total energy) that decays with the characteristic
radiative lifetime of the excitons, τX.

The result above shows that an electrostatic trap with negligible boundary ionization is
effective in confining a spatially uniform dipolar exciton fluid with densities of ∼1011 cm2

for a time comparable to τX. This is strikingly different from either a free expanding dipolar
exciton fluid discussed previously or dipolar excitons in a low quality trap with a considerable
boundary ionization, as depicted in figure 13(b), in which a comparison of the exciton profiles
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Figure 13. Radial profile of the dipolar exciton density distribution for (a) a high quality
electrostatic trap (τ = 1.5 μs in the trap boundary region) at various times, and (b) high quality trap
(solid line), low quality trap (τX = 0.1 ns in the boundary region, dashed line), and free expanding
excitons (dotted line) at t = 45 ns. The bar at the bottom of each figure mark the radial extent of
the trap.

at 45 ns after the excitation is shown for the three cases. In the case of free expanding excitons,
the density rapidly decreases, as the driven expansion continues to spread the exciton fluid to
large radii. For a low quality trap (τtrap = 0.1 ns), excitons reaching the trap boundaries are
effectively eliminated by ionization, depleting the overall exciton density much quicker. Note
that in this case, the exciton profile remains curved and does not flattens like the exciton pool
in the high quality trap. The lack of this curvature can be used as a supporting experimental
evidence that a trap indeed has low boundary ionization, as will be shown later.

The cooling and thermalization of this confined fluid of dipolar excitons are governed
by the temperature equation, equation (7). The equation is similar to that used for the free
expanding excitons. Again, the initial exciton temperature is taken to be TX (t = 0) 
 50 K,
much hotter than the lattice temperature Tl = 1.4 K. The 2D exciton degeneracy or the ground
state occupation number, NE=0, is easily determined using the calculated exciton density and
temperature.

To see the dramatic effect of the trapping on the quantum degeneracy of dipolar excitons
with high mobility (Ddo = 10 cm2 s−1), we show in figure 14(a) the calculated NE=0, as
a function of time after photoexcitation, for excitons in a high and low quality electrostatic
trap compared to that of free expanding excitons calculated previously. Initially, the ground
state occupation is much smaller than unity, as the excitons are hot and essentially classical.
The exciton fluid then starts to expand and cool. As the transition to a distinctive Bose–
Einstein statistics arises when T0/TX ∼ 1, there is a competition between cooling that tends to
increase NE=0 and expansion that tends to decrease it due to the drop of nX. In a high quality
electrostatic trap, the expansion of the dipolar excitons is limited to the trap boundaries, and
thus reaches steady state after ∼10 ns. After that, the heating due to dipole potential which
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Figure 14. (a) The exciton ground state occupancy, NE=0, as a function of time for a high quality
trap (τtrap = 1.5 μs, solid line), a low quality trap (τtrap = 1 ns, dash–dotted line) and free
expanding excitons (dashed line). The cross-hatched area marks the non-degenerate region. (b) The
temperature evolution for dipolar excitons in the high quality trap (solid line) and free expanding
excitons (dashed line).

is significant for a free expanding excitons is absent. Cooling is therefore efficient, as is seen
in figure 14(b), and the excitons reach a stable highly degenerate state with NE=0 � 1, that
decays slowly on the timescale of τX. On the contrary, if the excitons are freely expanding (no
trap), their density continues to drop as they expand. While they continue to cool by interaction
with the lattice, the expansion itself heats up the fluid, as more internal potential energy is
lost and converted into heat by the fast exciton–exciton scattering. This leads to a slower net
cooling rate for the free expanding excitons compared with the trapped ones, and consequently
the excitons reach only marginal quantum degeneracy before their density drops too low due
to the fast driven expansion. Finally, in a low quality trap, the drop in exciton density due
to boundary ionization dominates over the cooling, completely preventing the excitons from
reaching quantum degeneracy.

These calculations strongly suggest that the creation of a stable and long lifetime highly
degenerate dipolar exciton pool is of close reach with the help of the electrostatic trapping. The
above analysis is based on an critical assumption that the cooling rate is much shorter than the
exciton lifetime. While this is very reasonable (see [15]), it is now up to the experiments to
verify this assumption by revealing evidence of Bose–Einstein statistical effects.

6.3. Experimental results

In this section, we discuss experiments performed on dipolar excitons in electrostatic traps
following the design discussed in section 6.1. These results show compelling evidence for
the successful implementation of the electrostatic trapping scheme, in which a high density,
stable, and spatially uniform exciton fluid is maintained in a truly confined and controlled
configuration [32]. In fact, for at least half a microsecond, the dipolar exciton fluid sustains a
density higher than the critical density for degeneracy if the exciton fluid temperature reaches
the lattice temperature within that time. It is therefore possible that the excitons are indeed
degenerate although we have not yet observed a definite and unambiguous signature of Bose–
Einstein statistics.

The GaAs/AlGaAs DQW structures used for the measurements is similar in design to those
discussed in section 5 and figure 2. We will discuss measurements performed on two samples:
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Figure 15. (a) An optical image of the top gate of an electrostatic trap. (b) Spatially resolved
emission spectra from an 80 μm trap (sample A) collected from a radial cross-section of the top
gate along the dashed line showing in (a). The dashed white line in (b) is the calculated potential
profile for the dipolar excitons. The energy axis shows the red-shift of the emission from the direct
exciton emission line whose actual position is at 1.5567 eV (797 nm).

one (sample A) has z/ l 
 0.03 while the other (sample B) has z/ l 
 0.3. The purpose is
to show the difference between samples with high and low exciton ionization near the trap
boundary.

We first measure the trap energy profile by spatially resolving the emission spectrum of
the dipolar excitons. The emission is collected along the radial cross-section of the trap gate
shown in figure 15(a) and is dispersed by a spectrometer. An example of such spectral image
is shown in figure 15(b), taken from an 80 μm diameter trap of sample A at T = 5 K with an
applied bias of 3 V, excited using a defocused CW He–Ne laser. The confining potential profile
can be clearly seen from the red-shifted emission under the gate. The emission energy outside
the trap corresponds to zero field, or direct exciton line at 1.5567 eV. The white dashed line is
the calculated trap potential, which nicely fits the experimental data. The emission from inside
the trap appears dimmer due to the semitransparent metallic trap gate which blocks most of the
optical excitation into the trap as well as most of the trap emission.

The effect of a non-negligible in-plane electric field near the trap boundary is to ionize
the dipolar excitons into opposite charges which are pulled to different directions. This will
unavoidably result in an accumulation of unbalanced charges outside the trap which will in
turn affect the exciton formation and their emission characteristics outside the trap. Based on
this analysis, we developed a spatially resolved ‘excitation pump–probe’ technique to estimate
the extent of the exciton ionization. In particular, an ‘excitation pump’ from a non-resonant
CW He–Ne laser, is focused to the centre of a trap (r = 0). An additional, similar but weak
‘excitation probe’ beam is focused outside the trap where no external bias was applied. The
experimental geometry is shown in figure 16(a). The idea is that the excitons created inside
the trap may undergo ionization at the trap boundary, and the ionized charged carriers that will
drift outwards and accumulate outside of the trap will affect the emission spectrum of excitons
created by the spatially remote excitation probe. Figures 16(b), (c) and (d), (e) present the
spectral image taken from a 50 μm diameter electrostatic trap from sample A (z/ l = 0.03)
and B (z/ l = 0.3), respectively. The images were taken with the excitation pump either on or
off. For the entire range of pump excitation powers and gate bias, we find that the probe PL
is independent of the presence of the excitation pump for sample A, even for excitation probe

21



J. Phys.: Condens. Matter 19 (2007) 295207 R Rapaport and G Chen

Figure 16. (a) Geometry of the PL pump–probe experiment on a 50 μm diameter trap. The PL is
spatially resolved along the dashed line with its energy shown as a red-shift from the direct exciton
line. (b) and (c) show the emission spectral images from sample A with the excitation pump off
and on, respectively. The pump power is 30 μW and dipolar exciton red-shift is 5 meV. (d) and
(e) show emission spectra for sample B with the excitation pump off and on taken under identical
conditions. The white dotted lines mark the trap boundary. The low energy probe PL line (inside
the white circle in (e)) indicates that sample B is ‘leaky’, as expected from its design (see text).

positions very close to the trap boundary. It always corresponds to the transition energy and
lineshape of direct excitons, consistent with the zero bias conditions expected outside of the
trap and is an indication of the high quality of the trap boundaries in sample A. On the contrary,
the probe PL behaviour of sample B (z/ l = 0.3) is remarkably different: with excitation pump
off, the emission of the probe excitons is similar to that observed in sample A. However, as the
excitation pump beam is turned on, we observe an additional probe emission peak at the lower
energy side of the direct exciton emission line, as marked by the dashed circle in figure 16(e).
This dramatic change of the remote probe emission can only be explained by a leakage of
carriers from the trap to the location of the probe, changing the local electrostatic environment
and thus affecting the emission.

The distance to which the ionized carriers can extend outside a low quality trap can be
investigated by moving the excitation probe to different distances away from the trap and
monitor the excitation probe induced emission while keeping the excitation pump on in the
trap. We observed that the extra line discussed above in sample B (with the peak marked by
the dashed circle in figure 16(e)) gradually shifts to blue (towards the direct exciton line) as the
excitation probe moves away from the trap boundary. This is shown in figure 17, in which the
spectral positions of the extra peak, measured by its relative red-shift from the direct exciton
line, are plotted as a function of the distance of the excitation probe from the trap centre. The
excitation pump is maintained at 30 μW in the centre of the trap. We see that in this steady
state case, the carriers leaking from a low quality trap can extend extremely far away from the
trap boundary, affecting the excitation probe induced emission. All of the measurements above
confirm our design rule in which z/ l of the structure needs to be minimized.

A comparison between the spectral images taken from a free expanding exciton fluid and
excitons in a 50 μm electrostatic trap of sample A (a high quality trap) is shown in figures 18(a)
and (b). The dashed lines mark the boundary of the trap. Again, the vertical axis shows the
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Figure 17. The spectral position of the peak marked by the dashed circle in figure 16(e) as a
function of the distance of the excitation probe from the trap centre of sample B. An excitation
pump of 30 μW is kept on at the centre of the trap. The energies are measured as red-shifts from
the direct exciton line.

Figure 18. (a) Spatially resolved emission spectra of (a) free expanding dipolar excitons, (b) dipolar
excitons confined in a 50 μm trap, with a CW He–Ne laser excitation. The emission lines at a zero
red-shift are due to the direct exciton emission. The bias is 4 V and the excitation power is 30 μW.
The dashed lines mark the trap boundaries. (c) The extracted dipolar exciton density at the centre
of the excitation spot as a function of the CW laser excitation power on the sample surface for free
expanding and trapped excitons. The applied bias is 6 V.

spatial extent of the dipolar excitons and the horizontal axis represents the emission energy,
measured as red-shift relative to the direct exciton transition energy. The red-shift is due to a
combination of the externally applied electric field and the screening of the external electric
field by the excitons. While an increase of the external field will increase the red-shift, an
increase in the dipolar exciton density will decrease it. The amount of the red-shift can be used
as a measure of the dipolar exciton density, as we can write:

�ε = −εext + εd(nX). (14)

Here εext = |ez0�φ0/ l| is due to the externally applied field and εd(nX) is given by
equation (1). Hence, for a given external bias and thus a given εext, the higher the dipolar
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Figure 19. (a) Spectrally integrated intensity of the dipolar exciton emission along a radial cross-
section of an 80 μm trap of sample A with a potential depth of 30 meV, for three different times after
the initial excitation. (b) Calculated exciton density 120 ns after excitation for the case of reflecting
trap boundaries (solid red), absorbing trap boundaries (solid blue), and no boundaries (dash–dot
green). The black dash–dotted curve presents the initial exciton distribution.

exciton density, the larger the εd and the smaller the red-shift. We thus measure the red-shift at
every excitation power and then we use equation (14) together with equation (1) to extract an
estimate of the exciton density.

We can see from figures 18(a) and (b), that compared to the free expanding dipolar
excitons, dipolar excitons in the trap under similar conditions do not expand beyond the
boundary of the trap and their density is much higher (a smaller red-shift indicates a larger
εd and thus higher nX). This is shown more clearly in figure 18(c) which plots the estimated
dipolar exciton density as a function of the excitation power for excitons in traps of various
sizes and for free expanding excitons.

Note that equation (1) and thus the linear dependence of the repulsion energy on the
dipolar exciton density is correct only if we neglect correlations between the particles in the
fluid. While this assumption should hold well at low exciton densities, it may not hold at high
densities and low temperatures due to possible carrier correlations. The saturation of the red-
shift decrease (or the exciton density increase) at high excitation powers in figure 18(c) may be
related to such an effect.

The dynamics of the dipolar excitons in the trap can be monitored by time resolving the
spatial cross-sectional profile. The calculation discussed in section 6.2 show that the exciton
density profile in a trap with negligible exciton ionization near the boundary should expand
within the trap quickly (due to the dipole repulsion) following an excitation by a short optical
pulse. The exciton distribution should then flatten across the entire trap and decays on the
timescale determined by the dipolar exciton lifetime, τX. Figure 19 shows the experimental
verification. The emission was taken from an 80 μm diameter electrostatic trap (biased at 6 V
giving a trap depth of ∼30 meV) of sample A, after a short pulse excitation (pulse width 2 ps,
FWHM 
 40 μm), resonant with the direct exciton transition. The emission was spectrally
integrated over the whole dipolar exciton spectral line. In figure 19(a) the exciton profile
is measured at various times after the excitation, showing the expected flattening ∼100 ns
following the initial Gaussian shape. The boundary of the trap is marked by the dashed lines
and the exciton emission intensity drop at the trap boundary is sharp, limited only by the
imaging resolution. The dipolar exciton density immediately after the laser excitation pulse is
estimated to be ∼8 × 1010 cm2. The time trace of the emission at the centre of the trap plotted
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Figure 20. The time trace of the spectrally integrated PL at the centre of the trap studied in figure 19.

in the figure 20 implies that the exciton density decays exponentially with a microsecond time
constant after the profile has flattened. This decay time, τtrap, is similar to the intrinsic lifetime
of the dipolar excitons, τX, measured for free expanding dipolar excitons in the same structure.
It strongly suggests that exciton loss due to ionization at the electrostatic trap boundary in
sample A is negligible. The above results depict a picture of a uniform and stable exciton
fluid maintained at high density for a long period of time, determined by the exciton radiative
lifetime.

Finally, we would like to show the potential of high speed manipulation of the dipolar
exciton fluid inside an electrostatic trap of an InGaAs DQW structure. As an example, we show
that the depth of these electrostatic traps can be dynamically reconfigured on a short timescale.
We sharply modulate the bias voltage between two values at various frequencies (with a rise
and fall time of the driving waveform on the order of 1 ns). The dipolar exciton emission line
alternates between two spectral positions. If the trap can be reconfigured as fast as the driving
bias, we should then see two distinct dipolar exciton lines in a time integrated measurements.
If, however, the trap cannot be reconfigured as fast as the driving bias, then dipolar excitons
spend a significant portion of their time in transition from one spectral position to the other.
Therefore, a plateau in between the two dipolar exciton emission peaks is expected at high
modulation frequencies. We experimentally observed two distinct dipolar exciton peaks below
a modulation frequency of 100 kHz and a plateau that starts to appear above that frequency.
The example in figure 21(a) is a time integrated and spatially resolved spectra image for a bias
modulated between 0.5 and 1 V at a modulation frequency of 100 kHz, showing the two dipolar
exciton lines and the onset of the plateau in between. Figure 21(b) shows a spectrum along the
centre of the trap (the solid line in figure 21(a)). A calculation of the RC time constant of the
sample shows that, in the current experiment, the maximal modulation frequency is limited by
the residual contact capacitance, and hence we believe that higher modulation frequencies can
be achieved with small modifications of the contact geometry.

7. Excitons in rings

In the previous sections, we presented an electrostatic trapping method for achieving high
density and cold dipolar exciton fluids. Another system with a potential for creating dense and
cold excitons was discovered, quite incidentally, in 2002, prior to our work on electrostatic
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Figure 21. (a) Time integrated and spatially resolved spectrum of dipolar excitons in an electrostatic
trap with a bias modulated between 0.5 and 1 V at 100 kHz (corresponding to a period of 10 μs).
The dashed lines mark the trap boundary. (b) Spectrum along the centre of the trap (solid line in
(a)).

Figure 22. Photoluminescence images for single QW sample taken at an excitation power of
296 μW. The image is 700 × 700 μm. The sample was measured at T = 8 K, and excited
with a He–Ne laser (632 nm) with a spot diameter of ∼60 μm. The sample structure is detailed
in [35] and in figure 23.

trapping, and will be described in this section. Butov et al [33] and Snoke et al [34]
independently observed a striking spatial emission pattern from DQW structures quite similar
to those discussed above, except that the QW’s were modulation doped with excess electrons
via an n–i–n structure around the DQW’s. In those experiments, the dipolar excitons were
excited by a high energy, non-resonant and tightly focused laser beam. The observed dipolar
exciton emission pattern consists of the expected emission at the excitation spot and a surprising
surrounding emission ring at large radial distances, as shown in figure 22. The centre emission
spot and the ring are separated by a nominally dark region. This effect was initially speculated
to be a result of various exciton transport mechanisms and possibly some kind of collective
coherent state of cold excitons. About a year after its discovery, a more consistent explanation
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Figure 23. The single QW structure used for studying the exciton rings.

for its origin, backed by further detailed experiments and numerical analysis, was suggested
independently by us [35] and by Butov et al [36]. This explanation was based on an optically
induced in-plane charge separation rather than the more exotic initial ideas.

While this explanation suggests that the formation of the ring itself is not a consequence
of any spontaneous coherence of excitons, it does imply that the dipolar excitons formed at the
ring are possibly colder than those formed at the excitation spot, making this specific system
again interesting for the original purpose of obtaining dense and cold dipolar excitons. The
observation of the periodical modulation of the dipolar exciton emission ring by Butov et al
[33] in their initial experiments and the new measurements studying the spatial coherence of
the emission [37] show that this approach of cooling excitons may be potentially promising.
On the other hand, the charge separation can lead to large in-plane electric fields at the ring
boundaries which may cause exciton ionization and reduce the effective exciton lifetime. The
analysis of rings as a source of dipolar excitons will be discussed later in this section, while
the trade-offs of using exciton rings as a method for obtaining cold excitons will be discussed
further in section 8.

7.1. The ring formation mechanism and dynamics modelling

We start by presenting the physical origin of the ring formation. Before discussing the
mechanism in detail, we note that, in our own experiments, we found that this phenomenon is
not unique to double QW structures. We observed similar ring pattern in single QW structures.
In fact, data in figure 22 and the rest of this section were taken from a single QW structure,
as depicted in figure 23. This suggests that the ring formation does not require a long exciton
lifetime.

The suggested physical mechanism is shown in figures 24(a) and (b) in the context of a
single QW structure in figure 23 [35, 36], but is essentially identical in the case of DQW
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Figure 24. (a) The energy profile of the QW structure in the growth direction and the relevant
electronic processes under photoexcitation. (b) Schematic description of in-plane distributions of
electrons (open red circles) and excess holes (open blue circles) in the QW under steady state. The
excitation spot is marked by the shaded circular area. The recombination of electrons and holes or
excitons at the boundary gives rise to the ring pattern.

structures. Under the above-barrier optical excitation and applied bias (figure 24(a)), hot
electrons and holes are equally generated at the excitation spot but more holes are eventually
trapped in the QW. This is due to the larger hole trapping rate (compared to the electrons) as a
result of their smaller drift velocity and higher phonon scattering rate. The excess holes trapped
in the QW deplete the initial excess electrons (due to modulation doping and a tunnelling dark
current) to form a puddle of holes (at the excitation spot) surrounded by a sea of electrons
everywhere else in the QW. The boundary expands due to a continuous accumulation of holes
and their outward diffusion and in steady state becomes significantly larger than the excitation
spot. This is shown in figure 24(b). The emission of light can only occur at the e–h boundary
where the excitons are formed, leading to the luminescence ring pattern. The effective lifetime
of these charged carriers is now greatly enhanced even for single QW direct exciton transitions
which are inherently very fast. This is due to the effective charge separation where carriers can
meet and recombine (or become bound neutral excitons) only on the boundary (the ring).

The above picture can be described by the following model which determines the dynamics
of the optically excited carriers:

∂nhot

∂ t
= De

hot∇2nhot − nhot

τ e
cool

− nhot

τ e
drift

+ A f (r) (15)

∂phot

∂ t
= Dh

hot∇2 phot − phot

τ h
cool

− phot

τ h
drift

+ A f (r) (16)

∂nqw

∂ t
= De

qw∇2nqw + nhot

τ e
cool

− nqw − neq

τ e
leak

− ξnqw pqw (17)

∂pqw

∂ t
= Dh

qw∇2 pqw + phot

τ h
cool

− pqw

τ h
leak

− ξnqw pqw. (18)

The first two equations describe the evolution of the density distributions of hot electrons nhot(�r)

and hot holes phot(�r) optically excited above the barrier. These carriers can either diffuse in the
plane, become trapped in the QW (with a timescale of τ

e,h
cool), or simply drift across the sample
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to the electrical contacts in the growth direction (with a time scale of τ
e,h
drift). The source for

the hot carriers A f (r) is the optical excitation. Here, f (r) is the normalized excitation beam
profile and A is the total absorbed photon flux (each absorbed photon generates one electron
and one hole). Similarly, the third and fourth equations describe the dynamics of the density
distributions of electrons nqw(�r) and holes pqw(�r) in the QW. These carriers will diffuse in
the QW plane and are replenished from the hot carriers falling into the QW. They leak to or
from the contacts with rates τ e

leak and τ h
leak in a way that tries to bring the densities back to

the (equilibrium) densities of the dark state (neq for electrons, and zero for holes). Pairs of
carriers in the QW can also capture each other with an electron–hole capture (or collision time)
coefficient ξ . In this case, they either recombine directly and emit photons or, if the total
carrier density is small enough to allow for bound exciton states to be formed, there is a good
chance that an electron and a hole would be captured to form an exciton. This exciton will then
recombine with an exciton radiative lifetime (which would be short for direct excitons in single
QW but much longer for dipolar excitons in DQW structures). Note that the thermodynamics
of the excitons has been left out for simplicity as it does not play an important role in describing
the gross phenomenology of the emission ring.

Further simplification of these equations can be made by neglecting the hot carrier
diffusion which is typically much slower than the drifting and cooling processes. This reduces
the problem to a set of only two coupled rate equations for only the carriers in the QW:

∂nqw

∂ t
= De

qw∇2nqw + Ce A f (r) − nqw − neq

τ e
leak

− ξ nqw pqw (19)

∂pqw

∂ t
= Dh

qw∇2 pqw + Ch A f (r) − pqw

τ h
leak

− ξnqw pqw. (20)

Here, nhot/τ
e
cool = Ce A f (r) and phot/τ

h
cool = Ch A f (r) with Ce(h) = 1/(1 + τ

e(h)
cool /τ

e(h)
drift ). Ce(h)

can be estimated by comparing the experimentally measured light induced electric current to
the number of photogenerated hot carriers. In our simulation, we use Ce

∼= 0.2 and Ch
∼= 1.

We use a Gaussian beam profile ( f (r)) to describe our excitation spot with a beam diameter
of 60 μm FWHM. The electron diffusion coefficient of De

qw = 20 μm2 ns−1 is derived
from the measured electron mobility. The hole diffusion coefficient is then inferred to be
Dh

qw = De
qwme/mh = 5 μm2 ns−1. The leakage time τleak is taken to be on the order of

10 μs, and neq = 1011 cm−2. ξ , the capture coefficient, is estimated by a simple, classical
free electron–hole Coulomb capture model. In this model, a charged carrier is assumed to
be captured by an opposite charge if its thermal kinetic energy is smaller than the Coulomb
attraction. This model results in a capture cross-section of σ = ( e2

6πεkT )2. ξ is then given by

σvth/w = e4

36πε2w

√
3

μ∗k3 T 3 where vth is the thermal velocity of the carrier, μ∗ is the reduced

electron–hole effective mass, and w is the thickness of the QW. At a carrier density of 1011,
the electron–hole pair capture time is ∼1 ns. This number is typically much longer than the
recombination time of a direct exciton, τXD , in single QW structures but shorter than a typical
dipolar exciton lifetime, τX, in DQW structures.

The numerical solutions of the model in steady state are presented in figure 25 (under
certain simplified assumptions, analytical solutions can be obtained [38]). The laser intensity
profile is shown by the dark dotted line. The electron and hole density distribution profiles
(solid and dashed lines) clearly show the separation of these opposite charges, depicting a
picture where the excess holes in the centre are surrounded by an electron sea with the hole-rich
region (or electron depletion region) much larger than the excitation spot. The emission profile
(proportional to n × p) shown by the thick grey line portrays the resulting photoluminescence
pattern which consists of the centre spot and the ring at the charge separation boundary.
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Figure 25. Calculated QW electron (solid line) and hole (dashed line) density profiles and the
emission intensity (thick grey line) profile for a CW excitation at a power of 350 μW. The black
dotted line shows the incident photon intensity radial profile assuming that ξnqw pqw 	 nX/τX.

Figure 26. Left panel: calculated centre spot and ring emission spectroscopic characteristics:
(a) ring radius, (b) linewidth, (c) energy, (d) intensity, as a function of the excitation power. The
open circle and solid dots correspond to the centre spot and the ring emission, respectively. The
right panel (e)–(h) is the corresponding experimental results.

This model also allows us to calculate the spectroscopic features of the centre spot and ring
emission. For a later comparison with the experimental results, we have particularly calculated
the ring radius, the emission linewidth, energy, and intensity of the centre spot and ring emission
as a function of the excitation power, shown in the left panel of figure 26. The calculation shows
that at low excitation power, the emission only occurs at the excitation spot since the holes that
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Figure 27. Profiles of z at t = 0 and t = t0. The optical excitation at the centre spot is turned off
at t = 0. The ring appears where z = 0. The ring radius shrinks with time and at t0 it completely
collapses.

are captured in the well are not dense enough to deplete the modulation doped excess electrons
and thus there is no charge separation. In addition, since the excess electron density is high at
the centre, the emission spectrum is broad (figure 26(b)) and red-shifted (figure 26(c)). Here,
we assume a quasi-degenerate 2D electron–hole gas, with a emission linewidth determined by
the calculated electron and hole densities γ = Ee

f + Eh
f = π h̄2(nqw/me + pqw/mh), in which

Ee
f and Eh

f are the electron and hole Fermi energies, and me and mh are the effective masses.
The energy shift is due to bandgap renormalization EBGR = E0 − η(nqw/me + pqw/mh)

1/3

([39, 40]), with η being a fitting parameter (to experiments). As the excitation power increases,
the electrons are gradually depleted at the centre spot, leading to narrower linewidth and smaller
red-shift, until the electrons are completely depleted and the charge separation and the ring
pattern start to appear (figure 26). As the excitation power is further increased, the boundary of
the charge separation expands outward leading to larger ring radii. In the meanwhile, the centre
spot becomes hole rich with increasing density, again leading to broader linewidth and larger
red-shift. The ring emission, however, remains narrow and little red-shifted, corresponding to
relatively low carrier densities at the charge separation boundary (see figure 25 for the electron
and hole density profiles).

A very intriguing additional prediction of the model is that the macroscopic charge
separation and therefore the ring emission persist for an extremely long time compared to
the centre spot lifetime after the laser excitation is turned off [35, 41]. This can be nicely
seen analytically with only few simplifications in the above model [41]: the calculation of the
ring emission lifetime is performed by combining equations (19) and (20) with the assumption
De

qw = Dh
qw = Deh and τ e

leak = τ h
leak = τ to obtain the equation for the charge imbalance

z(r) = pqw(r) − nqw(r) with the dark charge imbalance being z0 = −neq:

∂z

∂ t
= Deh∇2z − z − z0

τ
+ fz. (21)

Here, fz = (Ch − Ce)A f (r) is the source for the charge imbalance due to the excited carriers
falling into the QW. We assume that a steady state charge separation is established by a
CW excitation at time zero that can be approximated by a Gaussian function z(r, t = 0) =
Me− r2

�2 − neq, where M and � is the excited stationary peak value and width of z. This initial
charge imbalance is shown by the solid line in figure 27. The radius of the emission ring at
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Figure 28. t0 as a function of the tunnelling time τ in units of the characteristic diffusion time tD.
t0 is upper bounded by tD(1 − neq/M) for large τ and decreases with decreasing τ .

any given time rring(t) is determined by the condition z(rring, t) = 0, which gives the position
of the charge separation boundary (nqw(rring) = pqw(rring)), and its value at t = 0 is marked
in the figure. The excitation source is then abruptly turned off. The charge imbalance value
decreases with time due to the combined effect of charge diffusion and leakage. After some
time t0, the ring radius shrinks to zero, rring = 0, shown by the dashed curve in figure 27. This
is when the emission ring disappears into the centre spot. We define this time t0 as the charge
separation response time (or lifetime) and it can be calculated analytically using equation (21)
(details are given in [41]). The calculated t0 is shown in figure 28 as a function of the leakage
(tunnelling) time in units of a characteristic diffusion time tD = M�2/4Dehneq. We see that
the ring response is determined by both the diffusion time tD and the tunnelling time τ . In
particular, it shows that t0 is upper bounded by tD(1 − neq/M) for large τ . As τ becomes
shorter, t0 decreases and is eventually determined by τ for τ 	 tD. Note that M − neq is
the amplitude of the initial charge imbalance. It is obvious that M > neq (complete electron
depletion at the excitation spot) is a necessary condition for the ring formation and a non-zero
t0.

A steady state peak carrier imbalance density M (2 × 1012 cm−2) and a width � (300 μm)
can be estimated from experiments [35]. The diffusion time tD is then calculated to be 250 μs
for a hole diffusion coefficient of 2 μm2 ns−1. Assuming that the tunnelling time is much larger
than tD, t0 is then ∼tD(1 − neq/M) ∼ 200 μs. This response time is extremely slow as it is
much longer than the exciton lifetime.

An important implication of the extremely long response time is that after the excess holes
are generated at the excitation spot, they spend hundreds of microseconds migrating to where
the emission ring is. Therefore, it is expected that these initially hot holes generated optically
in the QW should have enough time to thermalize to the lattice temperature. As a result,
the excitons formed at the ring should have an excess kinetic energy due to the electron–
hole capture process that is no more than the exciton binding energy (which however might
still hinder a complete exciton cooling). In addition, the supply of the excitons at the ring is
extremely persistent: the positive and negative charge plasmas remain separated with excitons
formed at their boundary for microseconds even if the optical excitation source is turned off.

We note that the above model for the ring formation can be extended to include the effect of
the screened Coulomb pressure [42]. This would result in drift terms for the electrons and holes

32



J. Phys.: Condens. Matter 19 (2007) 295207 R Rapaport and G Chen

Figure 29. Photoluminescence images for our single QW sample taken at three different excitation
powers, 50, 265 and 296 μW, are shown in the left panel (a)–(c). The middle panel (d)–(f) shows
the results of the model calculations. The asymmetry of the ring pattern with respect to the centre
spot is probably due to a gradient of the barrier width, which is not taken into account in our model.
The right panel (g)–(i) presents the corresponding experimentally observed centre spot (solid line)
and ring (dashed line) emission spectra. The sample was measured at T = 8 K, and excited with a
He–Ne laser with a spot diameter of ∼60 μm.

besides the diffusion terms already given in equations (19) and (20). It can also be extended
to include the effect of excitation below the barrier energy which tends to decrease the charge
imbalance and thus the ring size [43]. We also note that an equation similar to equation (21)
was elegantly used in [36] to analytically predict the shape of two converging rings.

7.2. Experimental results

We carried out extensive experiments in a single QW structure with all the results confirming
the validity of the model discussed above. Our single QW sample shown schematically in
figure 23 consists of a 60 Å In0.13Ga0.87As QW surrounded by GaAs/Al0.32Ga0.68As 50/1000 Å
barriers. A 1000 Å layer of Si doped GaAs is located 2000 Å from the QW on the n+ substrate
side and another similar layer is located 1000 Å from the QW on the top contact side. Gold
films are deposited on both sides of the sample to form contacts. A 3 mm hole is opened on the
top gold film for the optical measurements.

In figure 29, we show the ring emission patterns and spectra at three different powers. The
spectra confirm that the centre emission is broad and red-shifted for low and high excitation
powers but narrower at the onset of the ring formation. In addition, the centre emission
line is slightly asymmetric for low and high excitation powers, characteristic of high carrier
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Figure 30. PL images for light intensity modulation experiments at a modulation period of (a) 10
and (b) 0.33 ms (0.1 and 3 kHz). (c) Emission profile along the dashed line in (a) and (b) for various
modulation periods, showing the transition from two concentric rings to an annulus. The schematics
in the middle curve of (c) show how the ring contrast, C = I2

I1
, is defined.

densities. However, the ring emission, as predicted, remains narrow and symmetric at all
powers and resembles a typical excitonic transition lineshape. The power dependence of the
various spectroscopic parameters are plotted in the right panel of figure 26, showing excellent
agreement with the calculations.

To confirm the prediction that the charge separation is a slow process determined by the
carrier diffusion and tunnelling, we use the following method to measure the dynamics (the
response time, t0) of the carriers [41]. The idea is that when an experimental condition,
the excitation power for example, is abruptly varied between two values, the ring pattern
corresponding to one power will undergo a dynamic change to the pattern corresponding
the other with a speed determined by the carrier diffusion and tunnelling, as discussed in
the modelling section. If the power alternation (frequency of modulation) is much slower
than those processes, a time averaged imaging of the emission will show two distinct rings.
However, as the modulation speed is increased to a level that is comparable or faster than the
carrier dynamics, the two emission rings will smoothly merge into an annulus. By studying
the smoothing of the annulus as a function of the modulation frequency, one can estimate the
carrier response time t0 experimentally.

Figures 30(a) and (b) show such measurements. The excitation power is sharply and
square modulated between 900 and 800 μW. The modulation period T is 10 and 0.33 ms
for figures 30(a) and (b), respectively. Figure 30(c) plots the cross-section along the dashed
line in figures 30(a) and (b) for several modulation periods, showing the smooth transition from
two distinct concentric rings to an annulus. We define the contrast of the concentric ring relative
to the annulus in between as C = I2

I1
, where I1 is the average peak emission intensity of the

two rings, and I2 is the difference between I1 and the emission intensity of the plateau midway
between the rings, respectively illustrated in figure 30(c). In [41] we show that the ring response
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(a) (b)

Figure 31. (a) Contrast C of the two emission rings relative to the annulus as a function of the
modulation frequency. The solid line is a fit using C = (T/2 − t0)/(T/2 − t0 + At0), where the
ring response time t0 is the only fitting parameter. (b) Normalized annulus width W as a function
of modulation frequency. The solid line is the model calculation.

time t0 is related to C , for all T � 2t0, through the following expression: C = T/2−t0
T/2−t0+2At0

.
Here A is the ratio of the ring spatial width and the width of the annulus. Figure 31(a) presents
a fit of the above expression to the experimental values of C as a function of 1/T from which
a value for the ring response time t0 = 250 μs, was obtained.

The other measurable parameter is the width of the annulus, W , which narrows as the
modulation speed is increased further since the carriers do not have enough time to respond.
Again, we have shown in [41] that W is related to t0 through the expression W = W0

T
2t0

, where
W0 is the radial distance between the two rings at low modulation frequencies. Figure 31(b)
presents W/W0 as a function of 1/T from the experiment and a solid line plotting the
theoretical prediction for W/W0 with t0 = 250 μs, confirming the previous extracted value
for the response time. This very large value is consistent with the model result discussed
previously. It is important to note that the above experiments were also performed under
different excitation intensity modulation depth. We found that the ring response time does
not vary much even for modulations in which the lower intensity is almost zero and the charge
boundary moves all the way between the excitation spot and a large diameter ring (the situation
that the model calculation was based on in the section 7.1). These observations are also
consistent with numerical calculations.

7.3. Exciton rings as a source of dipolar excitons

After we have established the model for the origin of the exciton emission ring and the
understanding of the ring dynamics and the timescales associated with it, we would like to have
a short discussion of the ring as a source of dipolar excitons and the simple way to incorporate
it into the model that we have used to analyse dipolar exciton dynamics in either the free
expansion case and the electrostatic trapping case.

As we have mentioned before, the model for the charge separation developed in section 7.1
can give the spatial distribution of both the electrons (nqw(r, t)) and holes (pqw(r, t)) in the
planes of the DQW. The rate of e–h capture that leads to the creation of excitons was given by
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ξnqw pqw in equations (19) and (20). Going back to the exciton model presented in section 4,
this e–h capture rate can be used as the source for dipolar excitons in equation (6), by setting
IX(r, t) = ξnqw pqw for any r where nqw, pqw < nmott, with nmott being the transition density
to e–h plasma. Such a connection between the two previously independent models can be done
by assuming that with the above condition on the densities, we can neglect the process in which
opposite charge carriers recombine without first creating an exciton and that the formation of
excitons does not significantly affect the charge separation dynamics. In this case, equation (6)
takes the form:

∂nX

∂ t
+ ∇ · (JD + Jd) + nX

τX
− ξnqw pqw = 0, (22)

where nqw, pqw are independently obtained from equations (19) and (20), and ξ can either be
calculated from the model presented in section 7.1 or can be tuned as a free parameter. We also
note that for a DQW ring system, τX, is now the effective exciton lifetime on the ring, and is
expected to be significantly shorter than its intrinsic recombination lifetime. This is due to the
fact that one expects a strong in-plane radial field in the ring, due to the effect of the charge
separation between the inner and outer sides of the ring radius. These in-plane fields will tend
to break the excitons at the two boundaries of the ring, in a manner similar to the effect on
the electrostatic trap boundary, thus giving rise to an effective exciton lifetime that can become
very short.

8. Exciton cooling—experimental considerations

In the previous sections, we described three possible techniques used for obtaining cold dipolar
excitons at high densities, i.e., free expanding excitons, excitons trapped in electrostatic traps
and excitons formed in rings. In this section we would like to point out some practical issues of
the cooling of excitons and present some simple guidelines for the experimental requirements.
In particular, we want to refer to the effect of heating from the excitation source, under
different experimental conditions, and to present simple ‘rule of thumb’ approximations for
its importance in the experiments.

We have shown that under pulsed excitation, the driven expansion of the dipolar fluid
leads to a fast reduction of the fluid density as well as an effective heating that slows down
the exciton cooling to the lattice temperature. Considering the case of CW excitation, the fluid
will eventually reach a steady state, both in its density profile and its temperature. Under such
steady state conditions, a continuous excitation of hot excitons is needed in order to replenish
the exciton population which is being constantly depleted via recombination. These excitons
carry excess kinetic energy due to the difference in their excitation energy with respect to the
cold dipolar excitons (under a typical non-resonant excitation).

To estimate the effect of heating due to the excess energy of the excited hot excitons,
we assume that excitons are created by the laser, each with an excess energy �εX0 (and thus
carries an effective excess temperature �TX0 = �εX0/k). As exciton–exciton scattering is very
efficient, this excess heat will be quickly distributed between the rest of the excitons. In steady
state, the total flow of excitons from the source (which is found by setting time derivatives to
zero in equation (6) and integrating it over space), I t

X = ∫
IX(r) d2r , is given by

I t
X = N t

X/τX, (23)

where N t
X = ∫

nX(r) d2r is the total number of excitons. The flow of heat into the system per
exciton, assuming instantaneous and equal distribution between all excitons, is then

IT = �TX0 I t
X/N t

X = �TX0/τX. (24)
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Setting equation (24) into equation (7) in steady state yields:

�TX = ITτl = �TX0
τl

τX
, (25)

where �TX ≡ TX − Tl, is the heating due to the CW hot exciton source in steady state. This
heating term is density independent and only depends on the excess temperature of the excitons
coming from the source and the ratio of the cooling time to the exciton lifetime. For typical
experimental values of laser excitation into the direct excitons, �EX0 = Edirect−EX

∼= 25 meV
and thus �TX0 = 300 K, we get �TX(K) ≈ 300τl/τX, and it is clear that under such
circumstances, it is preferable to have very long lifetime excitons to minimize exciton leakage
and thus the heating. To be a little more specific, we can require that the excitons be highly
degenerate, i.e., T0/TX = T0/(Tl + �TX) � 1. Setting Tl = 1 K and T0 = 4 K for
nX 
 6 × 1010 cm−2 for typical experiments of dipolar excitons described above, we get
�TX < 3 K and thus τX � 100τl. The exact value of τl is hard to determined, and as far as
we know, there are no conclusive measurements of it in dipolar exciton systems similar to the
ones described in this paper. If this number is of the order of nanoseconds, as was calculated
theoretically [15], it requires exciton lifetimes of the order of microseconds.

Equation (25) holds for excitons in electrostatic traps and in rings for the CW excitation.
In the case of excitons trapped in electrostatic traps, one have to replace the exciton lifetime
τX with the effective trap lifetime τtrap. For high quality traps, these two are essentially the
same. Therefore, cooling and steady state temperature of free expanding excitons and trapped
excitons are similar for the CW case, in contrast to the pulsed excitation experiments described
in previous sections in which the dipole heating leads to slower cooling for the free expanding
excitons. One has to remember however, that there is still a strong expansion of excitons
without a trap. This means that to achieve high exciton densities without trapping, much higher
pump powers are necessary, which could lead to a significant residual absorption of light by
the lattice which can then cause a heating of the lattice itself. Furthermore, CW experiments
in general pose a much more strict requirement on the exciton lifetime due to the residual heat
source compared to the pulsed excitation experiments. As seen above, in the CW case, τX has
to be orders of magnitude longer than τl, while in the pulsed excitation experiment, the dipolar
excitons in a trap (but not free expanding) are expected to cool to the lattice temperature after a
time that correspond to only few cooling times τl, which relaxes the requirement on τX.

As for exciton rings, since the charged carriers thermalize as they approach the ring, �TX0

is expected to be significantly smaller, while as we have mentioned before, the effective exciton
lifetime on the ring might also be significantly shorter than its intrinsic recombination lifetime.
It is hard to get more than a rough estimate of the combined effect of the carrier thermalization
and the effective ring lifetime without intensive calculations or a proper measurement. In
a recent paper [37], the exciton lifetime on the ring was quoted to be 40 ns, however no
explanation was given on how this lifetime was extracted. It is not clear, but certainly possible,
that excitons on the ring are indeed cold enough to become degenerate at high densities, and
recent intriguing results may suggest effects related to such degeneracy [37, 44]. Again, in all
cases, caution has to be taken when considering the above issues, and an independent measure
of the exciton lifetime and temperature would be extremely beneficial.

9. A note about trapped dipolar excitons crystal phase

It is interesting to note that exciton traps such as the ones described in details in section 6 form
a sharp boundary for the dipolar excitons, and essentially confine them in a small ‘bucket’.
In such case, excitons with a net repulsive interaction can in principle reach high density
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equilibrium and form a crystal phase. This phase, if stable, can compete with other quantum
phase transitions such as, for example, to a superfluid state.

To try to estimate the stability of such a crystal phase, we first calculate the total energy
of a 2D lattice of classical dipoles, aligned perpendicular to the 2D plane and arranged, for
example, in a square lattice formation (this may not be the lowest energy stoichiometry, but it
will suffice for the rough estimate we are after). The total potential energy of such a crystal in
equilibrium is given by:

ε
p
d =

∞∑
n,m=−∞
|n|+|m|�=0

d2

εr 3
0

1

(n2 + m2)3/2
∼= 12d2

εr 3
0

= 12d2

ε
n3/2

X , (26)

where r0 is the lattice constant. Next, the harmonic approximation for small vibrations around
equilibrium yields

ω2
0

∼= 18d2

εmXr 5
0

= 18d2

εmX
n5/2

X . (27)

For a given vibrational mode of the dipolar crystal, ωs(�k), the amplitude of the zero point
motion is given, using the virial theorem, by 〈U 2

s (�k)〉 = 〈εzpm(s, �k)/K (s, �k)〉, where K (s, �k) =
mXω2

s (
�k). Since due to symmetry, 〈(�U)2〉zpm = (〈U 2〉zpm − 〈U〉2

zpm) = 〈U 2〉zpm , the total
amplitude of the zero point motion can then be estimated from the sum:

〈(�U)2〉zpm = 1

nX

∑
�k,s

1

2
h̄ωs(�k)/(mXω2

s (
�k)) = 1

nX

∑
�k,s

h̄

2mXω2
s (

�k)
. (28)

Taking a simple dispersion form of a monatomic crystal and considering only the acoustic
modes, this sum can be integrated with the result,

〈(�U)2〉zpm ≈ h̄

2mXω0
. (29)

Applying the Lindemann criterion for melting 〈(�U)2〉 = C2
l r 2

0 , we get(
2h̄2ε

9mX

)1/2 (
1

nmelt
X

)1/4

≈ C2
l . (30)

If we (quite arbitrarily) choose a Lindemann parameter with a typical number Cl ∼ 0.2
and insert dipolar exciton parameters typical to our GaAs system, we get a melting density
nmelt

X ≈ 1 × 1015 cm−2, which indicates that a dipolar exciton crystal would not be stable
due to the zero point motion for all densities below the transition density to e–h plasma
(nmott ∼ 1 ×1011 cm−2), which is also a typical density range where the dipolar approximation
is still valid in similar systems. Thus the crystal, at least in its simple form, would not compete
with other phase transitions of the exciton fluid at low temperatures and high densities. It is
interesting that this very crude approximation is within the same order of magnitude of the
result of a recent Monte Carlo calculation of the melting transition of a 2D dipolar crystal by
Astrakharchik et al [45] (nmelt

X ≈ 7×1015 cm−2 when using same parameters). The above result
is not surprising as the dipolar excitons are very light (mX 
 0.2 me) and the dipole–dipole
interaction is rather weak, leading to a very non-stiff, unstable crystal.

10. Summary

The aim of this paper was to give an overview of the three different experimental configurations
(or techniques) that are recently leading the research of cold dipolar excitons in GaAs DQW
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heterostructures and which we have been experimenting with for the last few years. These
are free exciton fluids, electrostatically trapped excitons and excitons in excitonic rings. The
model we have presented seems to account well for most of the experimental results in all these
configurations, and allows us to get a deeper insight into their complex dynamics. We have
discussed the advantages and disadvantages of each of these configurations with both pulsed
and CW excitations. We find that in general, a pulsed excitation has less stringent restrictions
on the ratio of the cooling time to the lifetime cooling compared to a CW excitation, due to the
absence of a continuous heating source. We also show that under such a pulsed excitation, an
in-plane trapping of the dipolar exciton fluid seems to be necessary due to the fast expansion
and expansion induced heating of the excitons resulting from their mutual dipole repulsion.
We have shown that electrostatic trapping of excitons, with the proper design, seems to well
resolve this expansion problem by effectively confining the excitons in a small area. We also
presented a model to account for the physical origin of excitonic rings, and showed that it can
be considered as a potential CW source for cold excitons, considering its limitations. The effect
of heating sources under CW excitation was discussed and ‘rule of thumb’ requirements from
all the above configurations were presented.

With all the above considerations carefully accounted for, it seems that quantum degenerate
dipolar exciton fluids are within reach, and with the dynamics of the excitons in those systems
now fairly clear, unambiguous experimental evidences for quantum degeneracy and possibly
phase transitions of such excitons are now needed. We want to finally note that such efforts
are indeed ongoing, both in our group as well as in others. Some very recent results are
especially intriguing, and may be related to exciton degeneracy or exciton correlations. To
mention just some, the origin of the excitonic ‘beading’ is still unclear [33, 36, 46], and
recent measurements claim that these beads display an extended spatial coherence [37] which
is absent at higher temperatures. Similar pattern formation was also detected in other ring-like
systems [44, 47, 48], where again evidence of temperature dependent coherence was observed.
In our group, we have recently measured the correlations between the exciton excess internal
energy and their density, as the density decays with time. The interpretation of all the above
results have to be done with an extreme caution, as these systems are notoriously complex, but
they at least indicate that there are a lot of novel effects of cold dipolar excitons that need to be
properly explained.
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